Some comments on Gravitational Entropy and the Inverse Mean Curvature Flow
نویسنده
چکیده
The Geroch-Wald-Jang-Huisken-Ilmanen approach to the positive energy problem to may be extended to give a negative lower bound for the mass of asymptotically Anti-de-Sitter spacetimes containing horizons with exotic topologies having ends or infinities of the form Σg ×R, in terms of the cosmological constant. We also show how the method gives a lower bound for for the mass of time-symmetric initial data sets for black holes with vectors and scalars in terms of the mass, |Z(Q, P )| of the double extreme black hole with the same charges. I also give a lower bound for the area of an apparent horizon, and hence a lower bound for the entropy in terms of the same function |Z(Q, P )|. This shows that the so-called attractor behaviour extends beyond the static spherically symmetric case. and underscores the general importance of the function |Z(Q, P )|. There are hints that higher dimensional generalizations may involve the Yamabe conjectures.
منابع مشابه
A Novel Indicator to Predict the Onset of Instability of a Gravitational Flow on a Slope
In order to present a quantitative indicator for the onset of instability, in this paper, the critical points of a stratified gravitational flow on a slope are found and analyzed. These points are obtained by means of the solution of the two-dimensional Navier-Stokes equations via the standard Arakawa-C finite-difference method. Results show that in the marginal Richardson numbers, the critical...
متن کاملLectures on Mean Curvature Flow (MAT 1063 HS)
The mean curvature flow arises material science and condensed matter physics and has been recently successfully applied by Huisken and Sinestrari to topological classification of surfaces and submanifolds. It is closely related to the Ricci and inverse mean curvature flow. The most interesting aspect of the mean curvature flow is formation of singularities, which is the main theme of these lect...
متن کاملInsufficient Convergence of Inverse Mean Curvature Flow on Asymptotically Hyperbolic Manifolds
We construct a solution to inverse mean curvature flow on an asymptotically hyperbolic 3-manifold which does not have the convergence properties needed in order to prove a Penrose–type inequality. This contrasts sharply with the asymptotically flat case. The main idea consists in combining inverse mean curvature flow with work done by Shi–Tam regarding boundary behavior of compact manifolds. As...
متن کاملLectures on Mean Curvature Flow and Stability (MAT 1063 HS)
The mean curvature flow (MCF) arises material science and condensed matter physics and has been recently successfully applied to topological classification of surfaces and submanifolds. It is closely related to the Ricci and inverse mean curvature flow. The most interesting aspect of the mean curvature flow is formation of singularities, which is the main theme of these lectures. In dealing wit...
متن کاملThe Inverse Mean Curvature Flow in Robertson-walker Spaces and Its Application to Cosmology
We consider the inverse mean curvature flow in RobertsonWalker spacetimes that satisfy the Einstein equations and have a big crunch singularity and prove that under natural conditions the rescaled inverse mean curvature flow provides a smooth transition from big crunch to big bang. We also construct an example showing that in general the transition flow is only of class C.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999